Basic fibroblast growth factor protects against hypoxia-ischemia and NMDA neurotoxicity in neonatal rats.

نویسندگان

  • K Nozaki
  • S P Finklestein
  • M F Beal
چکیده

Basic fibroblast growth factor (bFGF) is a polypeptide that promotes neuronal survival and blocks excitatory amino acid (EAA) neurotoxicity in vitro at very low concentrations. In the present study, we examined whether systemically administered bFGF could prevent neuronal damage induced by either EAAs or hypoxia-ischemia in vivo. Neuroprotective effects were examined in a neonatal model of hypoxia-ischemia (unilateral ligation of the carotid artery followed by exposure to 8% oxygen for 1.5 h) and following intrastriatal injection of N-methyl-D-aspartate (NMDA) in 7-day-old rats. Intraperitoneal administration of a single dose of bFGF (50-300 micrograms/kg) 30 min before intrastriatal injection of NMDA showed a dose-dependent neuroprotective effect. Repeated doses of bFGF (100 micrograms/kg) both before and after intrastriatal NMDA injection produced a much greater significant protective effect than a single dose administered prior to the injection. Intraperitoneal injection of single dose of 100 micrograms/kg of bFGF 30 min before hypoxia-ischemia reduced neuronal damage by 38% (p = 0.14), while administration of bFGF at a dose of 100 micrograms/kg i.p. three times, 30 min before and 0 and 30 min after hypoxia-ischemia, significantly reduced neuronal damage by 64% (p = 0.004). Systemic administration of bFGF did not change body temperature for up to 3 h. These results show that systemic administration of bFGF can exert neuroprotective effects against both NMDA-induced excitotoxicity and hypoxia-ischemia in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats

Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...

متن کامل

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector.

Basic fibroblast growth factor (bFGF) has minimal pharmacological effects in the central nervous system in the absence of blood-brain barrier (BBB) disruption. BBB transport of bFGF occurs via an absorptive-mediated transcytosis mechanism, which is relatively inefficient. To enhance the BBB transport of bFGF, this neurotrophin was reformulated to enable receptor-mediated transport across the BB...

متن کامل

Brain-derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor function in cerebellar granule cells.

Evidence has accumulated to suggest that the NMDA glutamate receptor subtype plays an important role in neuronal degeneration evoked by hypoxia, ischemia, or trauma. Cerebellar granule cells in culture are vulnerable to NMDA-induced neuronal excitotoxicity. In these cells, brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (FGF2) prevent the excitotoxic effect of NMDA. ...

متن کامل

THE EFFECT OF ENDURANCE TRAINING ON GENE EXPRESSION OF NERVE AND FIBROBLAST GROWTH FACTORS IN THE HIPPOCAMPUS OF RATS AFTER BRAIN STROKE

Background & Aims: Neurotrophic and growth factors are known to have positive effects on neuronal proliferation. However, findings on the effects of exercise training on these factors following brain stroke are limited. Thus, the aim of the present study was to investigate the effect of endurance training on gene expression of nerve growth factor (NGF) and fibroblast growth factor (FGF) in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 1993